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Abstract. Electrical transport in semiconductor superlattices is often described by a miniband
model, where the electrons perform a quasiclassical motion. Although this model is assumed
to be valid in the limit of a large miniband width, some experiments indicate its validity for
narrow minibands as well. By a comparison with a full calculation based on nonequilibrium
Green functions we show, that this is the case if the width of the electronic distribution is larger
than both the field drop per period and the scattering width. In addition we show that simplified
expressions for miniband transport and sequential tunneling become identical in this regime.

The fabrication of semiconductor superlattices allows for the study of electric trans-
port in an artificial band structure [1, 2, 3]. Spectacular effects like negative differential
conductivity [4] and Bloch oscillations [5] have been observed experimentally. Recently,
high frequency oscillations due to travelling field domains have been studied [6, 7] as
well, see also Ref [8] and references cited therein. For low electric fields (where higher
subbands are not involved) the transport in superlattices is usually described by the
semiclassical motion of electrons in the miniband [1]. This approach is assumed to be
valid if the miniband width A is significantly larger than the scattering width F [3].
Here we want to investigate its applicability by a direct comparison with a full quantum
transport model.

We have recently proposed a transport model based on nonequilibrium Green func-
tions in order to study transport in superlattices [9]. The current density is determined

J(F) = -e 2  d k2 . (1)

First we calculate the retarded and advanced Green functions Grt and Gad, connecting
different wells n, m. We use self energies zret and Zadv which include both the coupling
between the wells (which is equal to A/4) and scattering at S-potentials within the self-
consistent Born approximation. Then we determine the lesser Green function between
neighbored wells via the Keldysh equation

G<,($, k) = ret v<Gadv....., ) (2)
G`m Gm^ -m 1 "m 1 ,n

where E< is obtained from a kind of relaxation time approximation. This approach
allows the treatment of coupling and scattering on equal footing and therefore goes be-
yond the restrictions of standard transport models like miniband transport or sequential
tunneling. Details of the calculation are given in Ref [9]. The resulting current-field
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Fig 1. Current-field relation for three different approaches: sequential tunneling (full line),
miniband conduction (dashed line), and our quantum transport theory (crosses). Parameters:
A = 2F, kBT = 3F, Nzz) = 0.2po0.

relations are found to be in good agreement with the results from the miniband con-
duction model if both A/2 > F and A/2 > eFd are fulfilled [9]. (Here eFd denotes
the potential drop per period.) Otherwise miniband conduction fails for a low elec-
tron concentration and a low temperature. In the opposite limit of small minibands
(A/2 < F) the results of our quantum transport model reproduce the results obtained
from the sequential tunneling model described in Refs. [8].

Experiments [10, 11] indicate that miniband conduction holds for superlattices with
relatively narrow miniband widths of A ; 3-4 meV as well, which are of the order
typical scattering widths F - 2-3 meV [11]. These experiments have been performed
at temperatures above 70 K, i.e. kBT > 6 meV, which is larger than both A/2 and
F. Therefore we have performed several calculations within our full quantum transport
theory for the experimental situation kBT > A/2, eFd, F and compared the current
field relations with the respective ones obtained from the miniband conduction model
and sequential tunneling. As can be seen in Fig. 1 all three approaches give almost
identical results in this regime.

In order to get more insight into these findings we want to consider the models
for sequential tunneling and miniband conduction in detail. The miniband model is
usually evaluated assuming a constant scattering time T within the relaxation time
approximation. In the nondegenerate limit one obtains the current density [3]

11 (A/2kBT) AT eFd
Jmini(F) eX2-o (A/2kBT) 2h2 (eFdTh)2 + 1 (3)

where N2D is the electron density per period of the superlattice and 10, 11 are the
modified Bessel functions. For kBT > A/2 the ratio between the Bessel functions
becomes A/4kBT and the current can be written as

Jmini(F) = eN2DA 2 2T eFd for kBT > A/2. (4)
8kBTh2 (eFdT/h)2 + 1

Now let us regard sequential tunneling between the wells. As the coupling between
neighbored quantum wells is given by A/4 the transition rate scales with A 2. The cur-
rent field relation is determined by a competition between the resonance condition and
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the difference of chemical potentials between neighboring wells. Assuming a constant
broadening F of the states the current can be approximated by [8]

Jseq(F) = epo A F + 2 dE [nF(E - ) - nF(E + eFd -)] (5)

where nF(x) = [exp(x/kBT) + 1]-' is the Fermi function, pt is the chemical potential
with respect to the bottom of the well and P0 = m/(7ih 2 ) is the two-dimensional density
of states. In the nondegenerate limit we have

[nF(E - p) -- nF(E + eFd - i)] =

N2D exp - exp ( + d (6)
pokBT kBT kBT

and the integration yields

A2  FeFd

Jseq(F) = eN2D 8kATh (eFd)2 + F 2  for kBT > eFd. (7)

Comparison between Eq. (4) and Eq. (7) exhibits that the expressions are identical if we
set F = h/T. Note that the origin of T and F is completely different: T describes the
relaxation time of electrons in the miniband while F is the energy width of localized
states in the wells. Nevertheless, both result from scattering processes and one can
explicitly show the equality F = h/T for scattering at S-potentials [9]. From these
observation we have found, that in the nondegenerate limit the simplified models for
sequential tunneling and miniband conduction yield exactly the same relations if kB T >
A/2, eFd. In particular the current density scales with the square of the miniband width
and is inversely proportional to the temperature as observed in Ref [11] and Ref [10],
respectively. For a nondegenerate electron gas, one can similarly show that Jmini = Jseq

for p >» A/2, eFd (see Refs. [8]). Again comparison with the full quantum model
indicates that both approaches are valid for p >» A/2, eFd, F.

Note that all the approaches considered here treat scattering only in a phenomeno-
logical way and do not properly take into account energy relaxation processes. Therefore
a full quantitative agreement with the experimental data can not be achieved. Never-
theless, we are convinced that the essential interplay between scattering and coupling is
treated correctly and that we can draw conclusions concerning the applicability of the
models. In particular we find that both miniband conduction and sequential tunneling
are appropriate to describe the electric transport in superlattices if the energy width
of the carrier distribution, Max(i,, kBT), is large compared to the scattering width, the
potential drop per period, and the miniband width.
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